Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nat Commun ; 14(1): 2259, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2303778

ABSTRACT

Monkeypox is a disease with pandemic potential. It is caused by the monkeypox virus (MPXV), a double-stranded DNA virus from the Poxviridae family, that replicates in the cytoplasm and must encode for its own RNA processing machinery including the capping machinery. Here, we present crystal structures of its 2'-O-RNA methyltransferase (MTase) VP39 in complex with the pan-MTase inhibitor sinefungin and a series of inhibitors that were discovered based on it. A comparison of this 2'-O-RNA MTase with enzymes from unrelated single-stranded RNA viruses (SARS-CoV-2 and Zika) reveals a conserved sinefungin binding mode, implicating that a single inhibitor could be used against unrelated viral families. Indeed, several of our inhibitors such as TO507 also inhibit the coronaviral nsp14 MTase.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , Methyltransferases/metabolism , SARS-CoV-2/genetics , Monkeypox virus/genetics , Monkeypox virus/metabolism , Viral Nonstructural Proteins/chemistry , RNA , Zika Virus/genetics , RNA, Viral/genetics
2.
Biochim Biophys Acta Gen Subj ; 1867(4): 130319, 2023 04.
Article in English | MEDLINE | ID: covidwho-2232428

ABSTRACT

Seven coronaviruses have infected humans (HCoVs) to-date. SARS-CoV-2 caused the current COVID-19 pandemic with the well-known high mortality and severe socioeconomic consequences. MERS-CoV and SARS-CoV caused epidemic of MERS and SARS, respectively, with severe respiratory symptoms and significant fatality. However, HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43 cause respiratory illnesses with less severe symptoms in most cases. All coronaviruses use RNA capping to evade the immune systems of humans. Two viral methyltransferases, nsp14 and nsp16, play key roles in RNA capping and are considered valuable targets for development of anti-coronavirus therapeutics. But little is known about the kinetics of nsp10-nsp16 methyltransferase activities of most HCoVs, and reliable assays for screening are not available. Here, we report the expression, purification, and kinetic characterization of nsp10-nsp16 complexes from six HCoVs in parallel with previously characterized SARS-CoV-2. Probing the active sites of all seven by SS148 and WZ16, the two recently reported dual nsp14 / nsp10-nsp16 inhibitors, revealed pan-inhibition. Overall, our study show feasibility of developing broad-spectrum dual nsp14 / nsp10-nsp16-inhibitor therapeutics.


Subject(s)
COVID-19 , Humans , Methyltransferases/chemistry , Pandemics , RNA , SARS-CoV-2/genetics
3.
Protein Sci ; 31(9): e4395, 2022 09.
Article in English | MEDLINE | ID: covidwho-1995551

ABSTRACT

SARS-CoV-2 nsp10-nsp16 complex is a 2'-O-methyltransferase (MTase) involved in viral RNA capping, enabling the virus to evade the immune system in humans. It has been considered a valuable target in the discovery of antiviral therapeutics, as the RNA cap formation is crucial for viral propagation. Through cross-screening of the inhibitors that we previously reported for SARS-CoV-2 nsp14 MTase activity against nsp10-nsp16 complex, we identified two compounds (SS148 and WZ16) that also inhibited nsp16 MTase activity. To further enable the chemical optimization of these two compounds towards more potent and selective dual nsp14/nsp16 MTase inhibitors, we determined the crystal structure of nsp10-nsp16 in complex with each of SS148 and WZ16. As expected, the structures revealed the binding of both compounds to S-adenosyl-L-methionine (SAM) binding pocket of nsp16. However, our structural data along with the biochemical mechanism of action determination revealed an RNA-dependent SAM-competitive pattern of inhibition for WZ16, clearly suggesting that binding of the RNA first may help the binding of some SAM competitive inhibitors. Both compounds also showed some degree of selectivity against human protein MTases, an indication of great potential for chemical optimization towards more potent and selective inhibitors of coronavirus MTases.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Methyltransferases/chemistry , RNA, Viral/metabolism , Viral Nonstructural Proteins/chemistry
4.
Biophys Chem ; 288: 106843, 2022 09.
Article in English | MEDLINE | ID: covidwho-1944353

ABSTRACT

The nucleocapsid protein of the SARS-CoV-2 virus comprises two RNA-binding domains and three regions that are intrinsically disordered. While the structures of the RNA-binding domains have been solved using protein crystallography and NMR, current knowledge of the conformations of the full-length nucleocapsid protein is rather limited. To fill in this knowledge gap, we combined coarse-grained molecular simulations with data from small-angle X-ray scattering (SAXS) experiments using the ensemble refinement of SAXS (EROS) method. Our results show that the dimer of the full-length nucleocapsid protein exhibits large conformational fluctuations with its radius of gyration ranging from about 4 to 8 nm. The RNA-binding domains do not make direct contacts. The disordered region that links these two domains comprises a hydrophobic α-helix which makes frequent and nonspecific contacts with the RNA-binding domains. Each of the intrinsically disordered regions adopts conformations that are locally compact, yet on average, much more extended than Gaussian chains of equivalent lengths. We offer a detailed picture of the conformational ensemble of the nucleocapsid protein dimer under near-physiological conditions, which will be important for understanding the nucleocapsid assembly process.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleocapsid , Nucleocapsid Proteins/chemistry , Protein Conformation , Scattering, Small Angle , X-Ray Diffraction
5.
J Struct Biol ; 214(3): 107879, 2022 09.
Article in English | MEDLINE | ID: covidwho-1914725

ABSTRACT

14-3-3 proteins are important dimeric scaffolds that regulate the function of hundreds of proteins in a phosphorylation-dependent manner. The SARS-CoV-2 nucleocapsid (N) protein forms a complex with human 14-3-3 proteins upon phosphorylation, which has also been described for other coronaviruses. Here, we report a high-resolution crystal structure of 14-3-3 bound to an N phosphopeptide bearing the phosphoserine 197 in the middle. The structure revealed two copies of the N phosphopeptide bound, each in the central binding groove of each 14-3-3 monomer. A complex network of hydrogen bonds and water bridges between the peptide and 14-3-3 was observed explaining the high affinity of the N protein for 14-3-3 proteins.


Subject(s)
14-3-3 Proteins , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , 14-3-3 Proteins/chemistry , COVID-19 , Coronavirus Nucleocapsid Proteins/chemistry , Humans , Phosphopeptides/chemistry , Phosphoproteins/chemistry , Protein Binding
6.
Molecules ; 27(6)2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1742558

ABSTRACT

Positive-sense single-stranded RNA (+RNA) viruses have proven to be important pathogens that are able to threaten and deeply damage modern societies, as illustrated by the ongoing COVID-19 pandemic. Therefore, compounds active against most or many +RNA viruses are urgently needed. Here, we present PR673, a helquat-like compound that is able to inhibit the replication of SARS-CoV-2 and tick-borne encephalitis virus in cell culture. Using in vitro polymerase assays, we demonstrate that PR673 inhibits RNA synthesis by viral RNA-dependent RNA polymerases (RdRps). Our results illustrate that the development of broad-spectrum non-nucleoside inhibitors of RdRps is feasible.


Subject(s)
COVID-19 , Encephalitis Viruses, Tick-Borne , Humans , Pandemics , RNA-Dependent RNA Polymerase , SARS-CoV-2
7.
Nucleic Acids Res ; 50(2): 635-650, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1621653

ABSTRACT

Coronaviral methyltransferases (MTases), nsp10/16 and nsp14, catalyze the last two steps of viral RNA-cap creation that takes place in cytoplasm. This cap is essential for the stability of viral RNA and, most importantly, for the evasion of innate immune system. Non-capped RNA is recognized by innate immunity which leads to its degradation and the activation of antiviral immunity. As a result, both coronaviral MTases are in the center of scientific scrutiny. Recently, X-ray and cryo-EM structures of both enzymes were solved even in complex with other parts of the viral replication complex. High-throughput screening as well as structure-guided inhibitor design have led to the discovery of their potent inhibitors. Here, we critically summarize the tremendous advancement of the coronaviral MTase field since the beginning of COVID pandemic.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/enzymology , Methyltransferases/antagonists & inhibitors , Methyltransferases/chemistry , Methyltransferases/metabolism , Amino Acid Sequence , Amino Acids/chemistry , Binding Sites , Coronavirus/genetics , Drug Discovery , Humans , Methylation , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Structure-Activity Relationship
8.
J Virol ; 95(15): e0046321, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1486505

ABSTRACT

The OC43 coronavirus is a human pathogen that usually causes only the common cold. One of its key enzymes, similar to other coronaviruses, is the 2'-O-RNA methyltransferase (MTase), which is essential for viral RNA stability and expression. Here, we report the crystal structure of the 2'-O-RNA MTase in a complex with the pan-methyltransferase inhibitor sinefungin solved at 2.2-Å resolution. The structure reveals an overall fold consistent with the fold observed in other coronaviral MTases. The major differences are in the conformation of the C terminus of the nsp16 subunit and an additional helix in the N terminus of the nsp10 subunits. The structural analysis also revealed very high conservation of the S-adenosyl methionine (SAM) binding pocket, suggesting that the SAM pocket is a suitable spot for the design of antivirals effective against all human coronaviruses. IMPORTANCE Some coronaviruses are dangerous pathogens, while some cause only common colds. The reasons are not understood, although the spike proteins probably play an important role. However, to understand the coronaviral biology in sufficient detail, we need to compare the key enzymes from different coronaviruses. We solved the crystal structure of 2'-O-RNA methyltransferase of the OC43 coronavirus, a virus that usually causes mild colds. The structure revealed some differences in the overall fold but also revealed that the SAM binding site is conserved, suggesting that development of antivirals against multiple coronaviruses is feasible.


Subject(s)
Betacoronavirus/enzymology , Methyltransferases/chemistry , Viral Proteins/chemistry , Betacoronavirus/genetics , Binding Sites , Crystallography, X-Ray , Methyltransferases/genetics , Protein Conformation, alpha-Helical , Viral Proteins/genetics
9.
Curr Mol Pharmacol ; 15(2): 418-433, 2022.
Article in English | MEDLINE | ID: covidwho-1399072

ABSTRACT

The pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV- 2), is responsible for multiple worldwide lockdowns, an economic crisis, and a substantial increase in hospitalizations for viral pneumonia along with respiratory failure and multiorgan dysfunctions. Recently, the first few vaccines were approved by World Health Organization (WHO) and can eventually save millions of lives. Even though, few drugs are used in emergency like Remdesivir and several other repurposed drugs, still there is no approved drug for COVID-19. The coronaviral encoded proteins involved in host-cell entry, replication, and host-cell invading mechanism are potential therapeutic targets. This perspective review provides the molecular overview of SARS-CoV-2 life cycle for summarizing potential drug targets, structural insights, active site contour map analyses of those selected SARS-CoV-2 protein targets for drug discovery, immunology, and pathogenesis.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Catalytic Domain , Communicable Disease Control , Humans
10.
Viruses ; 13(9)2021 08 30.
Article in English | MEDLINE | ID: covidwho-1390783

ABSTRACT

The ongoing COVID-19 pandemic exemplifies the general need to better understand viral infections. The positive single-strand RNA genome of its causative agent, the SARS coronavirus 2 (SARS-CoV-2), encodes all viral enzymes. In this work, we focused on one particular methyltransferase (MTase), nsp16, which, in complex with nsp10, is capable of methylating the first nucleotide of a capped RNA strand at the 2'-O position. This process is part of a viral capping system and is crucial for viral evasion of the innate immune reaction. In light of recently discovered non-canonical RNA caps, we tested various dinucleoside polyphosphate-capped RNAs as substrates for nsp10-nsp16 MTase. We developed an LC-MS-based method and discovered four types of capped RNA (m7Gp3A(G)- and Gp3A(G)-RNA) that are substrates of the nsp10-nsp16 MTase. Our technique is an alternative to the classical isotope labelling approach for the measurement of 2'-O-MTase activity. Further, we determined the IC50 value of sinefungin to illustrate the use of our approach for inhibitor screening. In the future, this approach may be an alternative technique to the radioactive labelling method for screening inhibitors of any type of 2'-O-MTase.


Subject(s)
COVID-19/virology , Methyltransferases/metabolism , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Chromatography, Liquid , Gene Expression Regulation, Viral , Humans , Mass Spectrometry , Methylation , Methyltransferases/genetics , RNA Caps , RNA, Viral/genetics , SARS-CoV-2/genetics , Substrate Specificity , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics
11.
Viruses ; 13(8)2021 08 11.
Article in English | MEDLINE | ID: covidwho-1355046

ABSTRACT

SARS-CoV-2 has caused an extensive pandemic of COVID-19 all around the world. Key viral enzymes are suitable molecular targets for the development of new antivirals against SARS-CoV-2 which could represent potential treatments of the corresponding disease. With respect to its essential role in the replication of viral RNA, RNA-dependent RNA polymerase (RdRp) is one of the prime targets. HeE1-2Tyr and related derivatives were originally discovered as inhibitors of the RdRp of flaviviruses. Here, we present that these pyridobenzothiazole derivatives also significantly inhibit SARS-CoV-2 RdRp, as demonstrated using both polymerase- and cell-based antiviral assays.


Subject(s)
Antiviral Agents/pharmacology , Benzothiazoles/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Pyridones/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , SARS-CoV-2/enzymology , SARS-CoV-2/physiology
12.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1262-1270, 2021.
Article in English | MEDLINE | ID: covidwho-1349900

ABSTRACT

SARS-CoV-2 encodes the Mac1 domain within the large nonstructural protein 3 (Nsp3), which has an ADP-ribosylhydrolase activity conserved in other coronaviruses. The enzymatic activity of Mac1 makes it an essential virulence factor for the pathogenicity of coronavirus (CoV). They have a regulatory role in counteracting host-mediated antiviral ADP-ribosylation, which is unique part of host response towards viral infections. Mac1 shows highly conserved residues in the binding pocket for the mono and poly ADP-ribose. Therefore, SARS-CoV-2 Mac1 enzyme is considered as an ideal drug target and inhibitors developed against them can possess a broad antiviral activity against CoV. ADP-ribose-1 phosphate bound closed form of Mac1 domain is considered for screening with large database of ZINC. XP docking and QPLD provides strong potential lead compounds, that perfectly fits inside the binding pocket. Quantum mechanical studies expose that, substrate and leads have similar electron donor ability in the head regions, that allocates tight binding inside the substrate-binding pocket. Molecular dynamics study confirms the substrate and new lead molecules presence of electron donor and acceptor makes the interactions tight inside the binding pocket. Overall binding phenomenon shows both substrate and lead molecules are well-adopt to bind with similar binding mode inside the closed form of Mac1.


Subject(s)
COVID-19 Drug Treatment , COVID-19/virology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , SARS-CoV-2/drug effects , Adenosine Diphosphate Ribose/metabolism , Amino Acid Sequence , Antiviral Agents/pharmacology , Computational Biology , Coronavirus Papain-Like Proteases/genetics , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/statistics & numerical data , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Domains , Quantum Theory , SARS-CoV-2/genetics , SARS-CoV-2/physiology , User-Computer Interface
13.
Curr Mol Pharmacol ; 15(2): 306-337, 2022.
Article in English | MEDLINE | ID: covidwho-1344222

ABSTRACT

The smallest of all the pathogens, viruses, have continuously been the foremost strange microorganisms. Viral infections can cause extreme sicknesses as evidenced by the HIV/AIDS widespread or the later Ebola or Zika episodes. Apprehensive framework distortions are also regularly observed as consequences of numerous viral infections. Besides, numerous viral infections are of oncoviruses, which can trigger different types of cancer. Nearly every year, a modern infectious species emerges, debilitating the world population with an annihilating episode. Subsequently, there is a need to create antivirals to combat such rising infections. From the discovery of the antiviral drug Idoxuridine in 1962 to the revelation of Baloxavir marboxil (Xofluza) that was approved by the FDA in 2018, the whole process and criteria of creating antivirals have changed significantly. In this article, different auxiliary science strategies are described that can serve as a referral for therapeutic innovation.


Subject(s)
Virus Diseases , Viruses , Zika Virus Infection , Zika Virus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Virus Diseases/drug therapy , Zika Virus Infection/drug therapy
14.
Viruses ; 13(8)2021 07 29.
Article in English | MEDLINE | ID: covidwho-1335227

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease-19 pandemic. One of the key components of the coronavirus replication complex are the RNA methyltransferases (MTases), RNA-modifying enzymes crucial for RNA cap formation. Recently, the structure of the 2'-O MTase has become available; however, its biological characterization within the infected cells remains largely elusive. Here, we report a novel monoclonal antibody directed against the SARS-CoV-2 non-structural protein nsp10, a subunit of both the 2'-O RNA and N7 MTase protein complexes. Using this antibody, we investigated the subcellular localization of the SARS-CoV-2 MTases in cells infected with the SARS-CoV-2.


Subject(s)
COVID-19/virology , Methyltransferases/metabolism , RNA Caps/genetics , RNA, Viral/genetics , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Antibodies, Monoclonal/analysis , Humans , Methyltransferases/analysis , Methyltransferases/genetics , Protein Transport , RNA Caps/metabolism , RNA, Viral/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Viral Nonstructural Proteins/analysis , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/analysis , Viral Regulatory and Accessory Proteins/genetics
15.
Molecules ; 26(13)2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1288958

ABSTRACT

Spanish flu, polio epidemics, and the ongoing COVID-19 pandemic are the most profound examples of severe widespread diseases caused by RNA viruses. The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands affordable and reliable assays for testing antivirals. To test inhibitors of viral proteases, we have developed an inexpensive high-throughput assay based on fluorescent energy transfer (FRET). We assayed an array of inhibitors for papain-like protease from SARS-CoV-2 and validated it on protease from the tick-borne encephalitis virus to emphasize its versatility. The reaction progress is monitored as loss of FRET signal of the substrate. This robust and reproducible assay can be used for testing the inhibitors in 96- or 384-well plates.


Subject(s)
Antiviral Agents/pharmacology , Fluorescence Resonance Energy Transfer/methods , High-Throughput Screening Assays/methods , Protease Inhibitors/pharmacology , RNA Viruses/enzymology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/metabolism , Drug Evaluation, Preclinical , Encephalitis Viruses, Tick-Borne/enzymology , Fluorescent Dyes/chemistry , Humans , RNA Helicases/antagonists & inhibitors , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , SARS-CoV-2/enzymology , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , COVID-19 Drug Treatment
16.
ACS Infect Dis ; 7(8): 2214-2220, 2021 08 13.
Article in English | MEDLINE | ID: covidwho-1275859

ABSTRACT

In this study, we have focused on the structure-based design of the inhibitors of one of the two SARS-CoV-2 methyltransferases (MTases), nsp14. This MTase catalyzes the transfer of the methyl group from S-adenosyl-l-methionine (SAM) to cap the guanosine triphosphate moiety of the newly synthesized viral RNA, yielding the methylated capped RNA and S-adenosyl-l-homocysteine (SAH). As the crystal structure of SARS-CoV-2 nsp14 is unknown, we have taken advantage of its high homology to SARS-CoV nsp14 and prepared its homology model, which has allowed us to identify novel SAH derivatives modified at the adenine nucleobase as inhibitors of this important viral target. We have synthesized and tested the designed compounds in vitro and shown that these derivatives exert unprecedented inhibitory activity against this crucial enzyme. The docking studies nicely explain the contribution of an aromatic part attached by a linker to the position 7 of the 7-deaza analogues of SAH.


Subject(s)
COVID-19 , Methyltransferases , Exoribonucleases , Humans , Ligands , Methyltransferases/genetics , SARS-CoV-2 , Viral Nonstructural Proteins
17.
Molecules ; 26(9)2021 Apr 29.
Article in English | MEDLINE | ID: covidwho-1217101

ABSTRACT

There is an urgent need for specific antiviral treatments directed against SARS-CoV-2 to prevent the most severe forms of COVID-19. By drug repurposing, affordable therapeutics could be supplied worldwide in the present pandemic context. Targeting the nucleoprotein N of the SARS-CoV-2 coronavirus could be a strategy to impede viral replication and possibly other essential functions associated with viral N. The antiviral properties of naproxen, a non-steroidal anti-inflammatory drug (NSAID) that was previously demonstrated to be active against Influenza A virus, were evaluated against SARS-CoV-2. Intrinsic fluorescence spectroscopy, fluorescence anisotropy, and dynamic light scattering assays demonstrated naproxen binding to the nucleoprotein of SARS-Cov-2 as predicted by molecular modeling. Naproxen impeded recombinant N oligomerization and inhibited viral replication in infected cells. In VeroE6 cells and reconstituted human primary respiratory epithelium models of SARS-CoV-2 infection, naproxen specifically inhibited viral replication and protected the bronchial epithelia against SARS-CoV-2-induced damage. No inhibition of viral replication was observed with paracetamol or the COX-2 inhibitor celecoxib. Thus, among the NSAID tested, only naproxen combined antiviral and anti-inflammatory properties. Naproxen addition to the standard of care could be beneficial in a clinical setting, as tested in an ongoing clinical study.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Naproxen/pharmacology , Nucleoproteins/antagonists & inhibitors , SARS-CoV-2/drug effects , Viral Proteins/antagonists & inhibitors , Animals , Cell Line , Chlorocebus aethiops , Drug Repositioning , Humans , Molecular Docking Simulation , Nucleoproteins/metabolism , SARS-CoV-2/physiology , Vero Cells , Viral Proteins/metabolism , Virus Replication/drug effects
18.
Front Chem ; 8: 595273, 2020.
Article in English | MEDLINE | ID: covidwho-1069717

ABSTRACT

The recent pandemic outbreak of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), raised global health and economic concerns. Phylogenetically, SARS-CoV-2 is closely related to SARS-CoV, and both encode the enzyme main protease (Mpro/3CLpro), which can be a potential target inhibiting viral replication. Through this work, we have compiled the structural aspects of Mpro conformational changes, with molecular modeling and 1-µs MD simulations. Long-scale MD simulation resolves the mechanism role of crucial amino acids involved in protein stability, followed by ensemble docking which provides potential compounds from the Traditional Chinese Medicine (TCM) database. These lead compounds directly interact with active site residues (His41, Gly143, and Cys145) of Mpro, which plays a crucial role in the enzymatic activity. Through the binding mode analysis in the S1, S1', S2, and S4 binding subsites, screened compounds may be functional for the distortion of the oxyanion hole in the reaction mechanism, and it may lead to the inhibition of Mpro in SARS-CoV-2. The hit compounds are naturally occurring compounds; they provide a sustainable and readily available option for medical treatment in humans infected by SARS-CoV-2. Henceforth, extensive analysis through molecular modeling approaches explained that the proposed molecules might be promising SARS-CoV-2 inhibitors for the inhibition of COVID-19, subjected to experimental validation.

19.
ACS Infect Dis ; 7(2): 471-478, 2021 02 12.
Article in English | MEDLINE | ID: covidwho-1006383

ABSTRACT

A series of 7-deazaadenine ribonucleosides bearing alkyl, alkenyl, alkynyl, aryl, or hetaryl groups at position 7 as well as their 5'-O-triphosphates and two types of monophosphate prodrugs (phosphoramidates and S-acylthioethanol esters) were prepared and tested for antiviral activity against selected RNA viruses (Dengue, Zika, tick-borne encephalitis, West Nile, and SARS-CoV-2). The modified triphosphates inhibited the viral RNA-dependent RNA polymerases at micromolar concentrations through the incorporation of the modified nucleotide and stopping a further extension of the RNA chain. 7-Deazaadenosine nucleosides bearing ethynyl or small hetaryl groups at position 7 showed (sub)micromolar antiviral activities but significant cytotoxicity, whereas the nucleosides bearing bulkier heterocycles were still active but less toxic. Unexpectedly, the monophosphate prodrugs were similarly or less active than the corresponding nucleosides in the in vitro antiviral assays, although the bis(S-acylthioethanol) prodrug 14h was transported to the Huh7 cells and efficiently released the nucleoside monophosphate.


Subject(s)
Antiviral Agents/pharmacology , Prodrugs/pharmacology , Purines/pharmacology , RNA Viruses/drug effects , Ribonucleosides/pharmacology , COVID-19/virology , Cell Line, Tumor , Dengue Virus/drug effects , Encephalitis Viruses, Tick-Borne/drug effects , Humans , Phosphates/pharmacology , Purine Nucleosides , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , West Nile virus/drug effects , Zika Virus/drug effects , COVID-19 Drug Treatment
20.
PLoS Pathog ; 16(12): e1009100, 2020 12.
Article in English | MEDLINE | ID: covidwho-954543

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.


Subject(s)
COVID-19 , Molecular Docking Simulation , Nucleocapsid Proteins/chemistry , Phosphoproteins/chemistry , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Humans , Magnetic Resonance Spectroscopy , Nucleocapsid Proteins/genetics , Phosphoproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL